Geometry of KAM tori for nearly integrable Hamiltonian systems
نویسندگان
چکیده
We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangean tori by glueing together local KAM conjugacies with help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to preservation of geometry, which allows us to define all nontrivial geometric invariants of an integrable Hamiltonian system (like monodromy) for a nearly integrable one.
منابع مشابه
Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy
We study the existence of quasi-periodic, invariant tori in a nearly integrable Hamiltonian system of high order proper degeneracy, i.e., the integrable part of the Hamiltonian involves several time scales and at each time scale the corresponding Hamiltonian depends on only part of the action variables. Such a Hamiltonian system arises frequently in problems of celestial mechanics, for instance...
متن کاملPersistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems
Chow, Li and Yi in [2] proved that the majority of the unperturbed tori on submanifolds will persist for standard Hamiltonian systems. Motivated by their work, in this paper, we study the persistence and tangent frequencies preservation of lower dimensional invariant tori on smooth sub-manifolds for real analytic, nearly integrable Hamiltonian systems. The surviving tori might be elliptic, hype...
متن کاملA Variant of Kam Theorem with Applications to Nonlinear Wave Equations of Higher Dimension
The existence of lower dimensional KAM tori is shown for a class of nearly integrable Hamiltonian systems where the second Melnikov’s conditions are relaxed, at the cost of the stronger regularity of the perturbed nonlinear term. As a consequence, it is proved that there exist many linearly stable invariant tori and thus quasi-periodic solutions for nonlinear wave equations of non-local nonline...
متن کاملKAM-Type Theorem on Resonant Surfaces for Nearly Integrable Hamiltonian Systems
In this paper, we consider analytic perturbations of an integrable Hamiltonian system in a given resonant surface. It is proved that, for most frequencies on the resonant surface, the resonant torus foliated by nonresonant lower dimensional tori is not destroyed completely and that there are some lower dimensional tori which survive the perturbation if the Hamiltonian satisfies a certain nondeg...
متن کاملKam Theory: the Legacy of Kolmogorov’s 1954 Paper
Kolmogorov-Arnold-Moser (or kam) theory was developed for conservative dynamical systems that are nearly integrable. Integrable systems in their phase space usually contain lots of invariant tori, and kam theory establishes persistence results for such tori, which carry quasi-periodic motions. We sketch this theory, which begins with Kolmogorov’s pioneering work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004